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Abstract

Here, we indicate how to integrate the set of conservation equations for mass, momentum and energy for a two-fluid plasma
coupled to Maxwell’s equations for the electromagnetic field, written in a composite conservative form, by means of a recently
modified non-staggered version of the staggered second order central difference scheme of Nessyahu and Tadmor [H. Nessyahu,
E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 408–463]. Allowing
for wave propagation in one dimension, we illustrate the formation and evolution of magnetosonic shocks and solitons using two
sets of time and space normalizations.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Solitons and shocks are observed in various fluids including plasmas, which can be treated as multi-species ionized
fluids subject to the laws of electrodynamics. Magnetosonic waves arise when propagation is observed in a direction,
say x, and are driven by a transverse magnetic field in a direction, say y, coupled with a transverse electric field
component in the other direction, z. The plasma then undergoes rarefactions and compressions in the x direction due
to the so-called “E × B drift” [3]. Theory, experiments and simulations [3,6,7,2] show that solitons and shocks occur
both in the laboratory and space.

In the past [6], a Lax-Wendroff scheme was employed in the numerical simulation of magnetosonic solitons,
and recently [7], an approximate Riemann solver was used to numerically integrate a two-fluid plasma system
to model magnetosonic shocks. A Riemann-solver-free scheme was employed on a single-fluid system to study
magneto-hydrodynamic (MHD) shocks [2]. Here, we employ a similar but non-staggered version [4] of the method of
Nessyahu and Tadmor [5] on a two-fluid plasma system to model both shocks and solitons. However, another thrust
of these studies is to examine the impact of the differing time scales induced by the widely disparate electron and
ion masses.

∗ Corresponding author.
E-mail addresses: baboolals@ukzn.ac.za (S. Baboolal), bharuthramr@science.wits.ac.za (R. Bharuthram).

0378-4754/$32.00 © 2007 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.matcom.2007.01.004

mailto:baboolals@ukzn.ac.za
mailto:bharuthramr@science.wits.ac.za
dx.doi.org/10.1016/j.matcom.2007.01.004


4 S. Baboolal, R. Bharuthram / Mathematics and Computers in Simulation 76 (2007) 3–7

2. The numerical integration scheme

For numerical study we write the system of equations in the conservative form,

∂U(x, t)

∂t
+ ∂F (U)

∂x
= G(U) (1)

where U(x, t) is the unknown (m-dimensional) vector, F (U) the flux vector and G(U) is a source vector, with x the
space and t the time coordinate. On this form, we can use the recently modified scheme [4], namely a non-staggered
source-term-inclusive variation form of [5]:
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This scheme advances the cell average vectors Ūn
j (see ref. [5]), where j is the spatial discretization index with

grid spacing �x, n the time level index, with time spacing �t, and it is used in conjunction with the derivative array
approximations (Ux) (see refs. [4,5] for details). Also required is a predictor such as [5],
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The predicted flux vector values are obtained by employing Fn+1 = F (Un+1) and the flux derivative terms Fn
x are

approximated just as we do for Ux [4,5].

3. The electromagnetic plasma fluid equations

The model equations employed are Maxwell equations for the electromagnetic fields E = [Ex, Ey, Ez]T and B =
[Bx, By, Bz]T coupled to the ideal-gas, collisionless-fluid equations for the electrons (s = e) and ions (s = i) in terms of
ns, Vs = [vsx, vsy, vsz]T, ps, γs, ms which are the respective component number densities, flow velocities, partial pres-
sures, adiabatic indices and particle masses with particle charges taken as −e (electrons) and +e (ions). Further, we take
γe = γi = γ as the adiabatic indices, pe = nekBTe and pi = nikBTi as the respective electron and ion partial pressures
for ideal fluids, with their temperatures given as Te = meV

2
Te

/kB and Ti = miV
2
Ti

/kB, where VTe and VTi denote the
root-mean-square thermal speeds for each species. These equations are reduced to components, but allowing for wave
disturbances in the x-direction with ∂/∂y ≡ 0 and ∂/∂z ≡ 0. Thereafter, we employ normalizations corresponding to
time and spatial scales appropriate for the observation of magneto-sonic wave structures, to render them dimensionless.

In the first of these schemes (“e-scale”), we consider normalizations on a fast time scale corresponding to the electron
plasma wave oscillation period. Here, the electron and ion densities are given in terms of n0 their common equilibrium

density, lengths (x) are in units of the electron Debye length λde = √
ε0kBTe0/n0e2 =

√
ε0meV

2
Te0

/n0e2, where ε0 is

the electric permittivity in free space and Te0 is the equilibrium electron temperature, temperatures are given in terms
of Te0 , particle charges in terms of e > 0 the electronic charge, time (t) is in units of the inverse of the electron plasma
frequency ωpe =

√
n0e2/ε0me, velocities are in units of the electron thermal speed at equilibrium VTe0

= √
kBTe0/me,

and we take γ = 5/3 for adiabatic fluids. Components of the electric field are in units of E0 =
√

men0V
2
Te0

/ε0, those

of the magnetic field are in units of B0 = E0/c, where c is the unnormalized speed of light, and we take rs = me/ms

as the mass ratios (= 1 for electrons, me/mi for ions) and σs as the normalized charge (= −1 for electrons, +1 for
ions). With normalized energy-per-mass terms, ws = ns|Vs|2 + 3nsV

2
Ts, the final 16-equation set then takes the form,

similar to those in refs. [6,7]:

∂
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∂
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[Bz] + ∂

∂x
[cEy] = 0. (11)

We write this set in the conservation form (1) with the notation,

U = [u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15, u16]T

≡ [ne, ni, nevex, nevey, nevez, nivix, niviy, niviz, we, wi, Ex, Ey, Ez, Bx, By, Bz]T (12)

and with consequential forms for F (U) and G(U).
In the second normalization scheme (“i-scale”), with time in terms of the inverse of the slower ion plasma frequency

ωpi =
√

n0e2/ε0mi, length as before and velocities in terms of the ion sound speed at equilibrium Cs0 =
√

meV
2
Te0

/mi,

the only changes to the basic equations occur in the mass ratio factors rs on the right of the above equations where now
rs = ri = 1 for ions and rs = re = mi/me for the electrons.

At this juncture, we note that the system of equations above, culminating in (1) is not locally hyperbolic. In fact
for its flux Jacobian it can be shown that the eigenvalues are not all real and distinct. This may be inferred from the
Maxwell equations subset (9)–(11). Nevertheless, although the numerical scheme used here [4] is based on ref. [5]
whose theoretical foundation assumes the system dealt with is hyperbolic, hyperbolicity is a sufficiency condition in
the latter stability and convergence theory. Thus, we can still expect the schemes to function under weaker conditions.
In fact our results bear testimony to this. Moreover, linear stability analysis of the scheme [5] indicates that it should
remain stable under the CFL condition 	m�t/�x ≤ 0.5, where 	m is the spectral radius of the flux Jacobian, which is
stronger than that for the Lax-Wendroff scheme used in electrostatic simulations [1]. Now, for the numerical integration,
we employ a system of size Lx = 128‘volumes’, each of size a Debye length λde, with the number of grid points per
volume of Npx = 20, giving �x = 0.05, an artificial ion-to-electron mass ratio of 10:1, an ion-to-electron temperature
ratio of 1:10 together with �t = 0.005. Further, to compute with this scheme we have to employ an implicit procedure
similar to [4,1]. The interesting variation here from the work of Shumlak and Loverich [7] is that the complete system
of equations is solved as if we are dealing with a hyperbolic system such as (1).

4. Magnetosonic shock and soliton computations

For shocks, we employ the initial conditions with c = 10, corresponding to a ‘very hot’ plasma, together with zero
initial flow velocities and free boundary conditions, corresponding to a Riemann (shock-tube or two-state plasma)
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problem with a discontinuity at the system centre xc:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ne = 4, ni = 4, Ve = 0, Vi = 0, we = 3neV
2
Te0

, wi = 3niV
2
Ti0

,

Ex = 0, Ey = 0, Ez = 0, Bx = 0, By = 1, Bz = 0; x ≤ xc.

ne = 1, ni = 1, Ve = 0, Vi = 0, we = 3neV
2
Te0

, wi = 3niV
2
Ti0

,

Ex = 0, Ey = 0, Ez = 0, Bx = 0, By = 1, Bz = 0; x > xc.

For soliton computations, we change only the initial density profile to a Gaussian (centred “hump”) for each
component,

ns(x, 0) = 1.0 + 4.0 exp

[
−1

2
(x − xc)2

]
; 0 ≤ x ≤ Lx (s = e, i).

A typical set of computed results using the fast and slow scalings is given in Fig. 1. Note that the time scale for the
graphs on the left bear no relation to the scale used for the graphs on the right. The first row shows magnetosonic shocks
as observed in the simulations [7]. The second row is a validation check on our computations, showing two independent
fluid shock tube solutions obtained for neutral gases by setting the electric charge e = 0 as obtained in ref. [7]. The
last row depicts magnetosonic solitons. The curves for Ex, Epx and φ provide a validation check on our code since the

Fig. 1. Shocks and solitons in a two-fluid plasma. The curves on the left arise from e-scale normalizations and those on the right are i-scaled. All
quantities are in normalized units, as functions of the horizontal x-values. The curve (a) indicate from top to bottom: ni, ne − 1, nivix, nevex − 1.
The curve (b) indicate ni, ne − 1, nivix − 1, nevex − 2. The curves (c) and (d) indicate ni, ne, nivix, nevex − 5. The curve (e) indicate ni, ne −
0.5, nivix, nevex − 0.5, Ex − 1, Epx − 2.0, φ − 3.5 with the same except for ni + 0.5, ne in (f).
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latter electric field and potential are obtained independently of this scheme by solving a ‘time-frozen’ Poisson equation.
Added confirmation that these solutions depict real physical nonlinear waves, is obtained by comparing the nonlinear
wave speeds estimated from the graphs above with those from the dispersion relation for linear magnetosonic waves.
For the latter we employ [3], the dispersion relation for a magnetosonic wave propagating in a direction perpendicular
to an ambient magnetic field B0(= By),

ω2

k2 = v2
m = c2 v2

s + v2
A

c2 + v2
A

(13)

where vs is the acoustic velocity, vA the Alvén velocity for a wave propagating parallel to the By and vm = ω/k is
the magnetosonic phase velocity. Using our two normalizing schemes, we find for the initial parameter values in our
computations the values, vm = ±0.435 (e-scale) and vm = ±1.374 (i-scale). The estimated respective shock velocities
are 0.53 and 1.60, whilst for solitons we have ±0.47 and ±1.40. Thus, both the shocks and solitons travel at supersonic
speeds, i.e. they relate to the corresponding linear magnetosonic mode. In general, we find that both scalings depict
the same physics, but the e-scaling allows us to use realistic mass ratios (e.g. mi/me = 1836) at the expense of larger
evolution times, whilst the i-scaling gives shorter evolution times and require artificially lower mass ratios for numerical
stability.

5. Conclusion

We have shown how the method [4] for the numerical integration of hyperbolic systems with source terms may be
used to solve the 3-D plasma fluid and electromagnetic field equations as a single system for waves in one dimension,
in contrast to an earlier work [7]. In modelling magnetosonic shocks, results consistent with earlier simulations are
obtained. For solitons, we have been able to obtain clear isolated pulses as opposed to solitary trains [6]. Additionally,
we have related such results to linear theory. Also our computations are based on a fast and a slow time scale with the
same model equations, and these remain stable and give essentially the same physical results. Finally, we expect to
improve on these investigations by extending similar computations into two- and three-space dimensions.

References

[1] S. Baboolal, Finite-difference modeling of solitons induced by a density hump in a plasma multi-fluid, Math. Comput. Simul. 55 (2001) 309–316.
[2] J. Balbas, E. Tadmor, C.C. Wu, Non-oscillatory central schemes for one- and two-dimensional equations I, J. Comput. Phys. 201 (2004) 261–285.
[3] F. Chen, Introduction to Plasma Physics, Plenum Press, New York, London, 1974.
[4] R. Naidoo, S. Baboolal, Numerical integration of the plasma fluid equations with a modification of the second-order Nessyahu-Tadmor central

scheme and soliton modeling, Math. Comput. Simul. 69 (2005) 457–466.
[5] H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 408–463.
[6] T. Ogino, S. Takeda, Computer Simulation for the Fast Magnetosonic Solitons, J. Phys. Soc. Jpn. 38 (1975) 568–575.
[7] U. Shumlak, J. Loverich, Approximate Riemann solver for the two-fluid plasma model, J. Comput. Phys. 187 (2003) 620–638.


	Two-scale numerical solution of the electromagnetic two-fluid plasma-Maxwell equations: Shock and soliton simulation
	Introduction
	The numerical integration scheme
	The electromagnetic plasma fluid equations
	Magnetosonic shock and soliton computations
	Conclusion
	References


